Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Immunol ; 14: 1266829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077368

RESUMEN

Vaccination with the primary two-dose series of SARS-CoV-2 mRNA protects against infection with the ancestral strain, and limits the presentation of severe disease after re-infection by multiple variants of concern (VOC), including Omicron, despite the lack of a strong neutralizing response to these variants. We compared antibody responses in serum samples collected from mRNA-1273 (Moderna) vaccinated subjects to identify mechanisms of immune escape and cross-protection. Using pseudovirus constructs containing domain-specific amino acid changes representative of Omicron BA.1, combined with domain competition and RBD-antibody depletion, we showed that RBD antibodies were primarily responsible for virus neutralization and variant escape. Antibodies to NTD played a less significant role in antibody neutralization but acted along with RBD to enhance neutralization. S2 of Omicron BA.1 had no impact on neutralization escape, suggesting it is a less critical domain for antibody neutralization; however, it was as capable as S1 at eliciting IgG3 responses and NK-cell mediated, antibody-dependent cell cytotoxicity (ADCC). Antibody neutralization and ADCC activities to RBD, NTD, and S1 were all prone to BA.1 escape. In contrast, ADCC activities to S2 resisted BA.1 escape. In conclusion, S2 antibodies showed potent ADCC function and resisted Omicron BA.1 escape, suggesting that S2 contributes to cross-protection against Omicron BA.1. In line with its conserved nature, S2 may hold promise as a vaccine target against future variants of SARS-CoV-2.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , SARS-CoV-2 , Inmunoglobulina G , Citotoxicidad Celular Dependiente de Anticuerpos , Células Asesinas Naturales , ARN Mensajero
2.
Rev Peru Med Exp Salud Publica ; 40(3): 297-306, 2023.
Artículo en Español, Inglés | MEDLINE | ID: mdl-37991033

RESUMEN

OBJECTIVE.: To develop and validate a cell suspension method using Vero 76 cells for culturing Zika virus (ZIKV) based on infection of detached freshly seeded cells. MATERIAL AND METHODS.: Three different multiplicities of infection of ZIKV were used to develop and compare this novel method to the standard confluent cell monolayer method. In addition, we preliminary validated the cell suspension method using well-characterized ZIKV positive and negative clinical samples. The standard confluent cell monolayer method was used as the reference method, and viral isolation was confirmed by a ZIKV-specific RT-PCR. The sensitivity and its 95% confidence intervals for the cell suspension method were estimated. Also, a technical comparison of the cell suspension method against the cell monolayer method was performed. RESULTS.: Our findings suggested that both the viral load and replication of ZIKV were comparable between both monolayer- and suspension-infection methods. Although both methods were suitable for culturing and isolating ZIKV, the cell suspension method was easier, cheaper, and quicker as well as a sensitive isolation technique. The cell suspension method was significantly more sensitive in detecting Zika in inconclusive cases by RT-PCR, with a fourfold increase compared to the confluent cell monolayer method. CONCLUSION.: The cell suspension method has the potential to be an effective method for cultivating and isolating ZIKV and its application is potentially useful in both research and clinical settings.


OBJETIVO: . Desarrollar y validar un método de suspensión celular utilizando células Vero 76 para el cultivo del virus Zika (ZIKV) basado en la infección de células recién sembradas no adheridas. MATERIAL Y MÉTODOS: . Se utilizaron tres multiplicidades de infección diferentes del ZIKV para desarrollar y comparar este novedoso método con el método estándar de monocapa de células confluentes. Además, validamos preliminarmente el método de suspensión utilizando muestras clínicas caracterizadas como positivas o negativas para el ZIKV. El método estándar de monocapa se utilizó como método de referencia, y el aislamiento viral se confirmó mediante un RT-PCR específico del ZIKV. Se estimó la sensibilidad e intervalos de confianza del 95% para el método de suspensión. Asimismo, se realizó una comparación técnica del método de suspensión contra el método de monocapa. RESULTADOS: . Nuestros hallazgos sugieren que tanto la carga viral como la replicación del ZIKV fueron comparables entre los métodos de infección en monocapa y en suspensión. Aunque ambos métodos fueron adecuados para cultivar y aislar el ZIKV, el método de suspensión se caracterizó por ser más fácil, barato y rápido, así como una técnica de aislamiento sensible. En comparación con el método de monocapa, el método de suspensión fue cuatro veces más sensible en la detección del ZIKV en casos inconclusos por RT-PCR. CONCLUSIONES: . El método de suspensión tiene el potencial de ser un método eficaz para cultivar y aislar el ZIKV y su uso es potencialmente útil tanto en la investigación como en entornos clínicos.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Chlorocebus aethiops , Humanos , Células Vero , Infección por el Virus Zika/diagnóstico , ARN Viral , Carga Viral
3.
PLoS Negl Trop Dis ; 17(9): e0011593, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656759

RESUMEN

Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.


Asunto(s)
Culicidae , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Viremia , Infección por el Virus Zika/epidemiología , Dengue/epidemiología
4.
Rev. peru. med. exp. salud publica ; 40(3): 297-306, jul. 2023. ilus, graf
Artículo en Español | LILACS, INS-PERU | ID: biblio-1522787

RESUMEN

Objetivo . Desarrollar y validar un método de suspensión celular utilizando células Vero 76 para el cultivo del virus Zika (ZIKV) basado en la infección de células recién sembradas no adheridas. Material y métodos . Se utilizaron tres multiplicidades de infección diferentes del ZIKV para desarrollar y comparar este novedoso método con el método estándar de monocapa de células confluentes. Además, validamos preliminarmente el método de suspensión utilizando muestras clínicas caracterizadas como positivas o negativas para el ZIKV. El método estándar de monocapa se utilizó como método de referencia, y el aislamiento viral se confirmó mediante un RT-PCR específico del ZIKV. Se estimó la sensibilidad e intervalos de confianza del 95% para el método de suspensión. Asimismo, se realizó una comparación técnica del método de suspensión contra el método de monocapa. Resultados . Nuestros hallazgos sugieren que tanto la carga viral como la replicación del ZIKV fueron comparables entre los métodos de infección en monocapa y en suspensión. Aunque ambos métodos fueron adecuados para cultivar y aislar el ZIKV, el método de suspensión se caracterizó por ser más fácil, barato y rápido, así como una técnica de aislamiento sensible. En comparación con el método de monocapa, el método de suspensión fue cuatro veces más sensible en la detección del ZIKV en casos inconclusos por RT-PCR. Conclusiones . El método de suspensión tiene el potencial de ser un método eficaz para cultivar y aislar el ZIKV y su uso es potencialmente útil tanto en la investigación como en entornos clínicos.


Objective. To develop and validate a cell suspension method using Vero 76 cells for culturing Zika virus (ZIKV) based on infection of detached freshly seeded cells. Material and methods. Three different multiplicities of infection of ZIKV were used to develop and compare this novel method to the standard confluent cell monolayer method. In addition, we preliminary validated the cell suspension method using well-characterized ZIKV positive and negative clinical samples. The standard confluent cell monolayer method was used as the reference method, and viral isolation was confirmed by a ZIKV-specific RT-PCR. The sensitivity and its 95% confidence intervals for the cell suspension method were estimated. Also, a technical comparison of the cell suspension method against the cell monolayer method was performed. Results. Our findings suggested that both the viral load and replication of ZIKV were comparable between both monolayer- and suspension-infection methods. Although both methods were suitable for culturing and isolating ZIKV, the cell suspension method was easier, cheaper, and quicker as well as a sensitive isolation technique. The cell suspension method was significantly more sensitive in detecting Zika in inconclusive cases by RT-PCR, with a fourfold increase compared to the confluent cell monolayer method. Conclusion. The cell suspension method has the potential to be an effective method for cultivating and isolating ZIKV and its application is potentially useful in both research and clinical settings.


Asunto(s)
Infección por el Virus Zika , Técnicas de Cultivo de Célula , Vigilancia en Salud Pública
5.
PLoS One ; 18(2): e0273798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730229

RESUMEN

Current knowledge of dengue virus (DENV) transmission provides only a partial understanding of a complex and dynamic system yielding a public health track record that has more failures than successes. An important part of the problem is that the foundation for contemporary interventions includes a series of longstanding, but untested, assumptions based on a relatively small portion of the human population; i.e., people who are convenient to study because they manifest clinically apparent disease. Approaching dengue from the perspective of people with overt illness has produced an extensive body of useful literature. It has not, however, fully embraced heterogeneities in virus transmission dynamics that are increasingly recognized as key information still missing in the struggle to control the most important insect-transmitted viral infection of humans. Only in the last 20 years have there been significant efforts to carry out comprehensive longitudinal dengue studies. This manuscript provides the rationale and comprehensive, integrated description of the methodology for a five-year longitudinal cohort study based in the tropical city of Iquitos, in the heart of the Peruvian Amazon. Primary data collection for this study was completed in 2019. Although some manuscripts have been published to date, our principal objective here is to support subsequent publications by describing in detail the structure, methodology, and significance of a specific research program. Our project was designed to study people across the entire continuum of disease, with the ultimate goal of quantifying heterogeneities in human variables that affect DENV transmission dynamics and prevention. Because our study design is applicable to other Aedes transmitted viruses, we used it to gain insights into Zika virus (ZIKV) transmission when during the project period ZIKV was introduced and circulated in Iquitos. Our prospective contact cluster investigation design was initiated by detecttion of a person with a symptomatic DENV infection and then followed that person's immediate contacts. This allowed us to monitor individuals at high risk of DENV infection, including people with clinically inapparent and mild infections that are otherwise difficult to detect. We aimed to fill knowledge gaps by defining the contribution to DENV transmission dynamics of (1) the understudied majority of DENV-infected people with inapparent and mild infections and (2) epidemiological, entomological, and socio-behavioral sources of heterogeneity. By accounting for factors underlying variation in each person's contribution to transmission we sought to better determine the type and extent of effort needed to better prevent virus transmission and disease.


Asunto(s)
Arbovirus , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Estudios Longitudinales , Estudios Prospectivos , Perú/epidemiología , Infección por el Virus Zika/epidemiología
6.
Proc Natl Acad Sci U S A ; 119(26): e2118283119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737833

RESUMEN

Over half the world's population is at risk for viruses transmitted by Aedes mosquitoes, such as dengue and Zika. The primary vector, Aedes aegypti, thrives in urban environments. Despite decades of effort, cases and geographic range of Aedes-borne viruses (ABVs) continue to expand. Rigorously proven vector control interventions that measure protective efficacy against ABV diseases are limited to Wolbachia in a single trial in Indonesia and do not include any chemical intervention. Spatial repellents, a new option for efficient deployment, are designed to decrease human exposure to ABVs by releasing active ingredients into the air that disrupt mosquito-human contact. A parallel, cluster-randomized controlled trial was conducted in Iquitos, Peru, to quantify the impact of a transfluthrin-based spatial repellent on human ABV infection. From 2,907 households across 26 clusters (13 per arm), 1,578 participants were assessed for seroconversion (primary endpoint) by survival analysis. Incidence of acute disease was calculated among 16,683 participants (secondary endpoint). Adult mosquito collections were conducted to compare Ae. aegypti abundance, blood-fed rate, and parity status through mixed-effect difference-in-difference analyses. The spatial repellent significantly reduced ABV infection by 34.1% (one-sided 95% CI lower limit, 6.9%; one-sided P value = 0.0236, z = 1.98). Aedes aegypti abundance and blood-fed rates were significantly reduced by 28.6 (95% CI 24.1%, ∞); z = -9.11) and 12.4% (95% CI 4.2%, ∞); z = -2.43), respectively. Our trial provides conclusive statistical evidence from an appropriately powered, preplanned cluster-randomized controlled clinical trial of the impact of a chemical intervention, in this case a spatial repellent, to reduce the risk of ABV transmission compared to a placebo.


Asunto(s)
Aedes , Repelentes de Insectos , Control de Mosquitos , Mosquitos Vectores , Enfermedades Transmitidas por Vectores , Adulto , Animales , Dengue/epidemiología , Dengue/prevención & control , Humanos , Control de Mosquitos/normas , Perú/epidemiología , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión , Virus Zika , Infección por el Virus Zika
9.
PLoS Pathog ; 12(6): e1005678, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27304426

RESUMEN

Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.


Asunto(s)
Carbunco/inmunología , Factor H de Complemento/inmunología , Tolerancia Inmunológica/inmunología , Glicoproteínas de Membrana/inmunología , Esporas Bacterianas/inmunología , Animales , Carbunco/metabolismo , Bacillus anthracis/inmunología , Bacillus anthracis/metabolismo , Factor H de Complemento/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Esporas Bacterianas/metabolismo
10.
PLoS One ; 8(6): e66177, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750280

RESUMEN

Pulmonary exposure to Bacillus anthracis spores initiates inhalational anthrax, a life-threatening infection. It is known that dormant spores can be recovered from the lungs of infected animals months after the initial spore exposure. Consequently, a 60-day course antibiotic treatment is recommended for exposed individuals. However, there has been little information regarding details or mechanisms of spore persistence in vivo. In this study, we investigated spore persistence in a mouse model. The results indicated that weeks after intranasal inoculation with B. anthracis spores, substantial amounts of spores could be recovered from the mouse lung. Moreover, spores of B. anthracis were significantly better at persisting in the lung than spores of a non-pathogenic Bacillus subtilis strain. The majority of B. anthracis spores in the lung were tightly associated with the lung tissue, as they could not be readily removed by lavage. Immunofluorescence staining of lung sections showed that spores associated with the alveolar and airway epithelium. Confocal analysis indicated that some of the spores were inside epithelial cells. This was further confirmed by differential immunofluorescence staining of lung cells harvested from the infected lungs, suggesting that association with lung epithelial cells may provide an advantage to spore persistence in the lung. There was no or very mild inflammation in the infected lungs. Furthermore, spores were present in the lung tissue as single spores rather than in clusters. We also showed that the anthrax toxins did not play a role in persistence. Together, the results suggest that B. anthracis spores have special properties that promote their persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence.


Asunto(s)
Bacillus anthracis/fisiología , Animales , Bacillus anthracis/patogenicidad , Bacillus subtilis/fisiología , Células Epiteliales/microbiología , Epitelio/microbiología , Pulmón/citología , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Fagocitos/microbiología , Especificidad de la Especie , Esporas Bacterianas/patogenicidad , Esporas Bacterianas/fisiología , Factores de Tiempo
11.
J Immunol ; 188(9): 4421-31, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22442442

RESUMEN

Interactions between spores of Bacillus anthracis and macrophages are critical for the development of anthrax infections, as spores are thought to use macrophages as vehicles to disseminate in the host. In this study, we report a novel mechanism for phagocytosis of B. anthracis spores. Murine macrophage-like cell line RAW264.7, bone marrow-derived macrophages, and primary peritoneal macrophages from mice were used. The results indicated that activation of the classical complement pathway (CCP) was a primary mechanism for spore phagocytosis. Phagocytosis was significantly reduced in the absence of C1q or C3. C3 fragments were found deposited on the spore surface, and the deposition was dependent on C1q and Ca(2+). C1q recruitment to the spore surface was mediated by the spore surface protein BclA, as recombinant BclA bound directly and specifically to C1q and inhibited C1q binding to spores in a dose-dependent manner. C1q binding to spores lacking BclA (ΔbclA) was also significantly reduced compared with wild-type spores. In addition, deposition of both C3 and C4 as well as phagocytosis of spores were significantly reduced when BclA was absent, but were not reduced in the absence of IgG, suggesting that BclA, but not IgG, is important in these processes. Taken together, these results support a model in which spores actively engage CCP primarily through BclA interaction with C1q, leading to CCP activation and opsonophagocytosis of spores in an IgG-independent manner. These findings are likely to have significant implications on B. anthracis pathogenesis and microbial manipulation of complement.


Asunto(s)
Carbunco/inmunología , Bacillus anthracis/fisiología , Vía Clásica del Complemento/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/inmunología , Fagocitosis/inmunología , Animales , Carbunco/genética , Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/inmunología , Línea Celular , Complemento C1q/genética , Complemento C1q/inmunología , Complemento C3/genética , Complemento C3/inmunología , Vía Clásica del Complemento/genética , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Esporas Bacterianas/genética , Esporas Bacterianas/inmunología
12.
PLoS One ; 5(7): e11665, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20652027

RESUMEN

Dissemination of Bacillus anthracis from the respiratory mucosa is a critical step in the establishment of inhalational anthrax. Recent in vitro and in vivo studies indicated that this organism was able to penetrate the lung epithelium by directly entering into epithelial cells of the lung; however the molecular details of B. anthracis breaching the epithelium were lacking. Here, using a combination of pharmacological inhibitors, dominant negative mutants, and colocalization experiments, we demonstrated that internalization of spores by epithelial cells was actin-dependent and was mediated by the Rho-family GTPase Cdc42 but not RhoA or Rac1. Phosphatidylinositol 3-kinase (PI3K) activity was also required as indicated by the inhibitory effects of PI3K inhibitors, wortmannin and LY294002, and a PI3K dominant negative (DN) mutant Deltap85alpha. In addition, spore entry into epithelial cells (but not into macrophages) required the activity of Src as indicated by the inhibitory effect of Src family kinase (SFK) inhibitors, PP2 and SU6656, and specific siRNA knockdown of Src. Enrichment of PI3K and F-actin around spore attachment sites was observed and was significantly reduced by treatment with SFK and PI3K inhibitors, respectively. Moreover, B. anthracis translocation through cultured lung epithelial cells was significantly impaired by SFK inhibitors, suggesting that this signaling pathway is important for bacterial dissemination. The effect of the inhibitor on dissemination in vivo was then evaluated. SU6656 treatment of mice significantly reduced B. anthracis dissemination from the lung to distal organs and prolonged the median survival time of mice compared to the untreated control group. Together these results described a signaling pathway specifically required for spore entry into epithelial cells and provided evidence suggesting that this pathway is important for dissemination and virulence in vivo.


Asunto(s)
Actinas/metabolismo , Bacillus anthracis/fisiología , Células Epiteliales/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Esporas Bacterianas/fisiología , Familia-src Quinasas/metabolismo , Androstadienos/farmacología , Animales , Bacillus anthracis/crecimiento & desarrollo , Western Blotting , Proteína Tirosina Quinasa CSK , Línea Celular , Supervivencia Celular , Cromonas/farmacología , Células HeLa , Humanos , Indoles/farmacología , Ratones , Microscopía Fluorescente , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Tirosina Quinasas/genética , Pirimidinas/farmacología , ARN Interferente Pequeño , Esporas Bacterianas/crecimiento & desarrollo , Sulfonamidas/farmacología , Wortmanina , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética
13.
Infect Immun ; 76(9): 3975-83, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18625737

RESUMEN

Inhalational anthrax is initiated by the entry of Bacillus anthracis spores into the lung. A critical early event in the establishment of an infection is the dissemination of spores from the lung. Using in vitro cell culture assays, we previously demonstrated that B. anthracis spores are capable of entering into epithelial cells of the lung and crossing a barrier of lung epithelial cells without apparent disruption of the barrier integrity, suggesting a novel portal for spores to disseminate from the lung. However, in vivo evidence for spore uptake by epithelial cells has been lacking. Here, using a mouse model, we present evidence that B. anthracis spores are taken up by lung epithelial cells in vivo soon after spores are delivered into the lung. Immunofluorescence staining of thin sections of lungs from spore-challenged BALB/c mice revealed that spores were associated with the epithelial surfaces in the airway and the alveoli at 2 and 4 h postinoculation. Confocal analysis further indicated that some of the associated spores were surrounded by F-actin, demonstrating intracellular localization. These observations were further confirmed and substantiated by a quantitative method that first isolated lung cells from spore-challenged mice and then stained these cells with antibodies specific for epithelial cells and spores. The results showed that substantial amounts of spores were taken up by lung epithelial cells in vivo. These data, combined with those in our previous reports, provided powerful evidence that the lung epithelia were directly targeted by B. anthracis spores at early stages of infection.


Asunto(s)
Bacillus anthracis/aislamiento & purificación , Células Epiteliales/microbiología , Pulmón/microbiología , Esporas Bacterianas , Actinas/análisis , Animales , Carbunco/microbiología , Recuento de Colonia Microbiana , Femenino , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Alveolos Pulmonares/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...